Computationally Efficient Estimation of Squared-Loss Mutual Information with Multiplicative Kernel Models

نویسندگان

  • Tomoya Sakai
  • Masashi Sugiyama
چکیده

Squared-loss mutual information (SMI) is a robust measure of the statistical dependence between random variables. The sample-based SMI approximator called least-squares mutual information (LSMI) was demonstrated to be useful in performing various machine learning tasks such as dimension reduction, clustering, and causal inference. The original LSMI approximates the pointwise mutual information by using the kernel model, which is a linear combination of kernel basis functions located on paired data samples. Although LSMI was proved to achieve the optimal approximation accuracy asymptotically, its approximation capability is limited when the sample size is small due to an insufficient number of kernel basis functions. Increasing the number of kernel basis functions can mitigate this weakness, but a naive implementation of this idea significantly increases the computation costs. In this article, we show that the computational complexity of LSMI with the multiplicative kernel model, which locates kernel basis functions on unpaired data samples and thus the number of kernel basis functions is the sample size squared, is the same as that for the plain kernel model. We experimentally demonstrate that LSMI with the multiplicative kernel model is more accurate than that with plain kernel models in small sample cases, with only mild increase in computation time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computationally Efficient Sufficient Dimension Reduction via Squared-Loss Mutual Information

The purpose of sufficient dimension reduction (SDR) is to find a low-dimensional expression of input features that is sufficient for predicting output values. In this paper, we propose a novel distribution-free SDR method called sufficient component analysis (SCA), which is computationally more efficient than existing methods. In our method, a solution is computed by iteratively performing depe...

متن کامل

Information-Maximization Clustering Based on Squared-Loss Mutual Information

Information-maximization clustering learns a probabilistic classifier in an unsupervised manner so that mutual information between feature vectors and cluster assignments is maximized. A notable advantage of this approach is that it involves only continuous optimization of model parameters, which is substantially simpler than discrete optimization of cluster assignments. However, existing metho...

متن کامل

A surrogate method for density-based global sensitivity analysis

This paper describes an accurate and computationally efficient surrogate method, known as the polynomial dimensional decomposition (PDD) method, for estimating a general class of density-based fsensitivity indices. Unlike the variance-based Sobol index, the f-sensitivity index is applicable to random input following dependent as well as independent probability distributions. The proposed method...

متن کامل

On Information-Maximization Clustering: Tuning Parameter Selection and Analytic Solution

Information-maximization clustering learns a probabilistic classifier in an unsupervised manner so that mutual information between feature vectors and cluster assignments is maximized. A notable advantage of this approach is that it only involves continuous optimization of model parameters, which is substantially easier to solve than discrete optimization of cluster assignments. However, existi...

متن کامل

Machine Learning with Squared-Loss Mutual Information

Mutual information (MI) is useful for detecting statistical independence between random variables, and it has been successfully applied to solving various machine learning problems. Recently, an alternative to MI called squared-loss MI (SMI) was introduced. While ordinary MI is the Kullback–Leibler divergence from the joint distribution to the product of the marginal distributions, SMI is its P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEICE Transactions

دوره 97-D  شماره 

صفحات  -

تاریخ انتشار 2014